Enhanced antitumor activity of surface-modified iron oxide nanoparticles and an α-tocopherol derivative in a rat model of mammary gland carcinosarcoma
نویسندگان
چکیده
Maghemite (γ-Fe2O3) nanoparticles were obtained by coprecipitation of ferrous and ferric salts in an alkaline medium followed by oxidation; the nanoparticles were coated with poly(N,N-dimethylacrylamide) (PDMA) and characterized by transmission electron microscopy, attenuated total reflection (ATR) Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering, thermogravimetric and elemental analyses, and magnetic measurements in terms of particle morphology, size, polydispersity, amount of coating, and magnetization, respectively. The effects of α-tocopherol (Toc) and its phenolic (Toc-6-OH) and acetate (Toc-6-Ac) derivatives on Fe2+ release from γ-Fe2O3@PDMA, as well as from γ-Fe2O3 and CuFe2O4 nanoparticles (controls), were examined in vitro using 1,10-phenanthroline. The presence of tocopherols enhanced spontaneous Fe2+ release from nanoparticles, with Toc-6-OH exhibiting more activity than neat Toc. All of the nanoparticles tested were found to initiate blood lipid oxidation in a concentration-dependent manner, as determined by analysis of 2-thiobarbituric acid reactive species. Wistar rats with Walker-256 carcinosarcoma (a model of mammary gland carcinosarcoma) received Toc-6-Ac, magnetic nanoparticles, or their combination per os, and the antitumor activity of each treatment was determined in vivo. γ-Fe2O3@PDMA nanoparticles exhibited increased antitumor activity compared to both commercial CuFe2O4 particles and the antitumor drug doxorubicin. Moreover, increased antitumor activity was observed after combined administration of γ-Fe2O3@PDMA nanoparticles and Toc-6-Ac; however, levels of bilirubin, aspartate aminotransferase, and white bloods normalized and did not differ from those of the intact controls. The antitumor activity of the γ-Fe2O3 nanoparticles strongly correlated with Fe2+ release from the nanoparticles but not with nanoparticle-initiated lipid peroxidation in vitro.
منابع مشابه
Zataria multiflora Essential oil Prevent Iron Oxide Nanoparticles-induced Liver Toxicity in Rat Model
Over loading of iron oxide nanoparticles can causes the liver injury through overproduction of free radicals. Zataria multiflora Boiss. (Lamiaceae) has been used for many years in folk medicine due to its antioxidant and antibacterial activities. This study evaluates -for the first time- the effect of Z. multiflora essential oil (EO) against iron oxide nanoparticles hepatotoxicity in rat model....
متن کاملFabrication and Characterization of Novel Mixed Matrix Polyethersulfone Nanofiltration Membrane Modified by Iron-Nickel Oxide Nanoparticles
In this study, a mixed matrix polyethersulfone/iron-nickel oxide nanoparticle nanofiltration membrane was prepared by the solution casting technique. Polyvinylpyrrolidone was also used as a membrane pore former in membrane fabrication. The effect of iron-nickel oxide nanoparticles concentration in the casting solution on the membrane structure and performance was investigated. Scanning...
متن کاملPreparation of surface modified magnetic Iron Oxide nanoparticles and study of their colloidal behavior
In this work, we report synthesis of surface modified superparamagnetic iron oxide nanoparticles (SPION) by co-precipitation method using FeSO4.7H2O and Fe2(SO4)3.5H2O as precursors and trisodium citrate dihydrate as surfactant. Surface modification of the as prepared samples was performed in pot by sol-gel precipitation method u...
متن کاملPreparation of surface modified magnetic Iron Oxide nanoparticles and study of their colloidal behavior
In this work, we report synthesis of surface modified superparamagnetic iron oxide nanoparticles (SPION) by co-precipitation method using FeSO4.7H2O and Fe2(SO4)3.5H2O as precursors and trisodium citrate dihydrate as surfactant. Surface modification of the as prepared samples was performed in pot by sol-gel precipitation method u...
متن کاملOptimization of Culture Conditions for Enrichment of Saccharomyces cerevisiae with Dl-α-Tocopherol by Response Surface Methodology
Designing enriched probiotic supplements may have some advantages including protection of probiotic microorganism from oxidative destruction, improving enzyme activity of the gastrointestinal tract and probably increasing half-life of micronutrient. In this study Saccharomyces cerevisiae enriched with α-tocopherol produced as an accumulator and transporter of a lipid soluble vitamin for the fir...
متن کامل